Targeted NGS Assay Kit in Unidentified Bacterial Urinary Tract

Jeremy Ellis, Ph.D. Christian Becker, B.S., Matthew Shabilla, M.S., Greg Harland, B.S., and Stephen Fry, M.S. M.D. BioID Genomics, Inc., 14807 N. 73rd Street Suite 103 Scottsdale, AZ 85260 www.bioidgenomics.com 1(480)530-0930

Abstract

Infections

Recurring and recalcitrant urinary tract infections remain an ongoing and unique healthcare challenge. Organisms often exhibit fastidious or unusual behaviors that contribute to the difficulty in a diagnosis. In the absence of a clear diagnosis, physicians frequently resort to an empiric therapeutic approach that may or may not yield a positive patient outcome. The first step in a successful treatment strategy is to detect and identify the nature of a putative infection. Urinary tract infections (UTIs) may arise from a variety of infectious etiologies including eubacteria, protozoa, and fungi. Microbial culture is widely considered the gold standard that enables isolation and identification of microbes; however, the time to results and the inability to detect and identify fastidious organisms remains problematic. While molecular detection methods (including quantitative and real time-PCR-based methods) have supplemented these deficits by reducing the turn-around-time and false-negative results, urinary tract infections still exhibit a 10-30% false-negative rate. In this study, we utilized NGS-based methods to detect and characterize unidentified microbes in 49 samples shown to be negative by PCR-based panels. Our results demonstrate that targeted PCR is insufficient to detect microbes in putative UTIs including microbes that would have been predicted to be detectable.

Sample Selection and Preparation

A total of 49 samples were collected from de-identified participants with diagnosed UTIs. Samples were residual samples that were previously tested by a quantitative PCR UTI screening panel (9 bacterial pathogens, 1 protozoal pathogen, 4 fungal pathogens, and 22 antibiotic resistance genes). All samples failed to yield a positive result even with qualitative features (turbidity, color, sediment, red and/or white-blood cells, and odor) suggesting the samples contained microbes. These samples were shipped on ice to the NGS laboratory where up to 8 mL of sample was processed via ultracentrifugation to generate a pellet of up to 200 μL in volume. With all supernatant removed, the resulting pellet was processed via the Qiagen DSP Blood Mini kit according to the protocol, except for substituting the urinary pellet for the intended blood sample. The resulting purified DNA was eluted into 30 μL AE buffer.

16S Microbial ID Kit

The 16S Microbial ID Kit (BioID Genomics) instructions were followed as described (Figure 1). A total of 1 µL DNA was loaded into each pair of wells in Amplification Plate 1 and 2. After the PCR amplification, two amplicon pools per sample were generated. An Illumina MiSeq was used with a Standard v2 Flowcell (Illumina) to sequence the subsequent amplicons. Data was automatically uploaded into BaseSpace and passed to the BioID Genomics analysis pipeline using the BaseSpace BioID Linker application. To ensure proper assay performance, Indices 1 and 2 were assigned to a urine extraction control that is spiked with a sequence-defined *Escherichia coli* in addition to an amplification control of sequence-defined Gamella haemolysans (both ATCC).

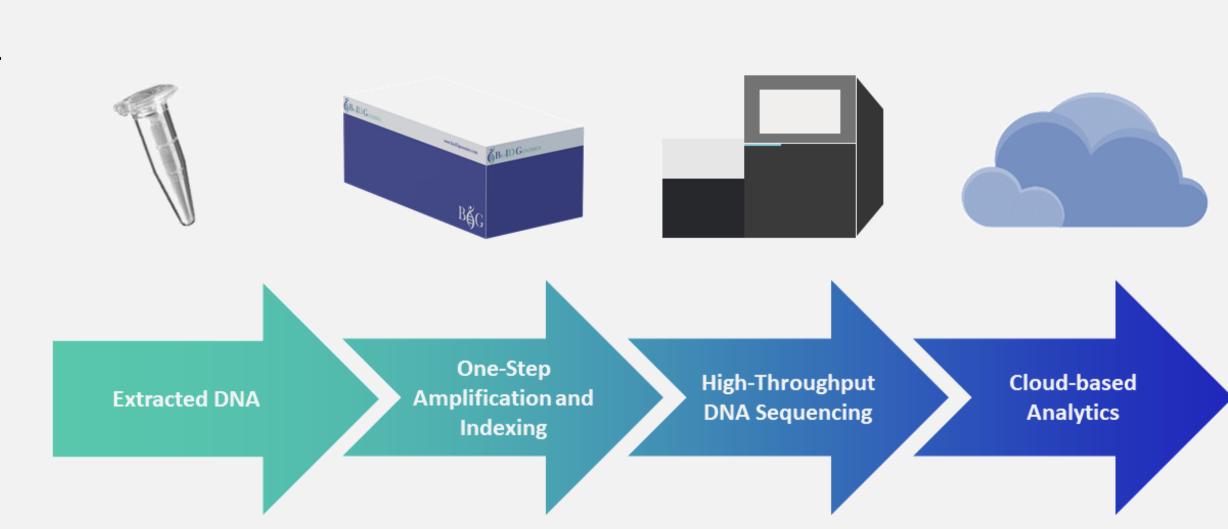


Figure 1 – The 16S Microbial ID Kit workflow according to the kit instructions.

Sequence Results

The submitted sequencing run generated a significant amount of high quality and indexable reads (Table 1) across both amplification plates as intended (Figure 2). The color-coded well pairs reflect the relative abundance of amplicons obtained for a specific DNA sample. The extraction and amplification controls were assigned to Index 1 and Index 2, respectively. The most abundant identified microbes and putative pathogens were tabulated (Table 2).

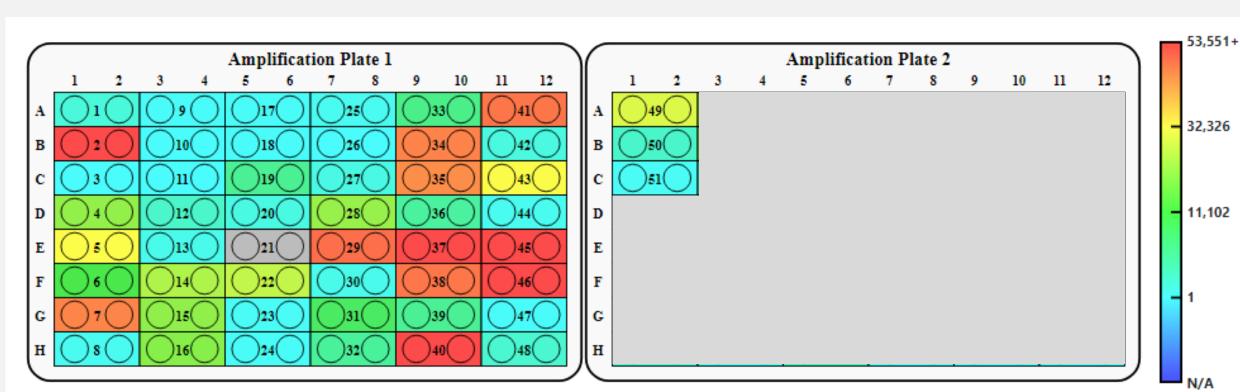


Figure 2 – Amplification Plate heatmap of samples.

Interestingly, bacteria were detected in all but 1 (2.0%) of the 49 putative UTI samples (Index 21). In total, 41 (85.4%) of the remaining 48 putative UTI samples exhibited microbial results consistent with a known pathogen that can cause UTIs, is associated with an infectious process, or may plausibly cause urinary tract infections. In 9 of the 41 cases (21.9%) where a putative pathogen was identified, the detected organism was included within the PCR target list. The remaining 32 cases (78.0%) revealed a putative pathogen that would not have been expected to be identified by the PCR assay. Of note, sample 36 exhibited a Mycoplasma girendii that has been associated with Trichomonas vaginalis infection; this is suggestive of an undiagnosed case of Trichomoniasis.

Furthermore, the range and complexity of the microbial populations vary widely; however, a few trends were obtained. Microbial populations with very high read counts with valid results typically result in a single bacterial pathogen. Curiously, samples with lower or moderate reads often contain a mixed population of bacterial species that have been associated with UTIs, are considered to have pathogenic potential, or are considered opportunistic pathogens.

_	Table 1 - Run Paran	ble 1 - Run Parameters				
	Run Parameters	Read Count	% Reads			
•	Sequences PF	1154625	100.0%			
•	Indexable	1013014	87.7%			
	Valid Results	988084	85.6%			
	Avg Reads / Index	18515	1.6%			

Sequences PF	1154625	100.0%
Indexable	1013014	87.7%
Valid Results	988084	85.6%
Avg Reads / Index	18515	1.6%
Results / Index	12173	1 6%

Index	Top Result	Sequences With Valid Results	Putative Pathogen
1	Escherichia coli - Control	2116	NA
2	Gemella haemolysans - Control	102371	NA
3	Pedobacter jejuensis	44	None Detected
4	Pseudomonas aeruginosa	13269	Pseudomonas aeruginosa
 5	Porphyromonas uenonis	32284	Porphyromonas uenonis
 6	Gardnerella vaginalis	11018	Gardnerella vaginalis
 7	Gardnerella vaginalis	35755	Gardnerella vaginalis
8	Ralstonia solanacearum	626	Acinetobacter junii
9	Aquihabitans daechungensis	231	None Detected
10	Exilispira thermophila	55	None Detected
11	Cutibacterium acnes	57	None Detected
12	Finegoldia magna	3094	Finegoldia magna - Aerococcus urinae
13	Actinotignum schaalii	1034	Actinotignum schaalii
14	Actinotignum schaalii	18483	Actinotignum schaalii
15	Lactobacillus jensenii	12753	Lactobacillus jensenii
16	Rodentibacter heylii	11224	Haemophilus influenzae
	Rothia dentocariosa	287	None Detected
18	Cutibacterium acnes	217	Anaerococcus provencensis
19	Atopobium vaginae	6523	Atopobium vaginae
20	Corynebacterium pyruviciproducens	1629	Aerococcus urinae
21	None Detected	0	NA
22	Staphylococcus epidermidis	21964	Staphylococcus aureus
23	Veillonella atypica	383	Veillonella atypica
24	Porphyromonas uenonis	270	Prevotella buccalis
25	Streptococcus mitis	672	Streptococcus mitis - Winkia neuii
26	Corynebacterium durum	82	None Detected
27	Corynebacterium tuberculostearicum	1581	None Detected
28	Lactobacillus gasseri	14191	Lactobacillus gasseri
29	Klebsiella pneumoniae	42501	Klebsiella pneumoniae
30	Cutibacterium acnes	1025	Lactobacillus iners
31	Lactobacillus crispatus	9541	Lactobacillus crispatus
32	Porphyromonas somerae	6026	Porphyromonas somerae
33	Prevotella colorans	7141	Enterobacter asburiae
34	Gardnerella vaginalis	36327	Gardnerella vaginalis
35	Escherichia coli	32803	Escherichia coli
36	Mycoplasma girerdii	5779	Mycoplasma girerdii (T. vaginalis Associated)
37	Staphylococcus epidermidis	104955	Staphylococcus aureus
38	Lactobacillus iners	39758	Lactobacillus iners
39	Prevotella disiens	6552	Escherichia coli
40	Gardnerella vaginalis	61587	Gardnerella vaginalis
41	Klebsiella pneumoniae	40162	Klebsiella pneumoniae
42	Enterococcus faecium	1856	Enterococcus faecium
43	Lactobacillus iners	32075	Lactobacillus iners
44	Ralstonia solanacearum	799	Staphylococcus aureus
45	Fusobacterium nucleatum	72282	Actinotignum schaalii
 46	Escherichia coli	79692	Escherichia coli
47	Veillonella atypica	240	Veillonella atypica
48	Lactobacillus iners	2660	Lactobacillus iners
49	Lactobacillus crispatus	26608	Lactobacillus crispatus
50	Streptococcus oralis	3166	Streptococcus pneumoniae
51	Schumannella luteola	391	Actinomyces oris
71	Jenamamena rateora	JJ1	riculioniyees ons

Conclusions

Taken together, these results suggest that approximately 80% of putative UTI cases will be detectable in an initial PCR-screen with an additional 17% detectable using a follow-up NGS-based method. This would result in a total assay performance of 97%. Additionally, NGS-based methods assembled using a robust and reproducible kit would enable up-front detection by NGS, further eliminating the need for PCR-based methods. Precise identification of the putative pathogens from samples types that are plagued by false-negative results represents a significant improvement when compared to microbial culture, the current gold standard.

